
1

Comparing Performance of Rendering Methods
for Physically Based Smoke Simulation

Daniel Filby

Abstract—This paper analyses the run-time performance dif-
ference between two rendering techniques for 3D grid-based
smoke simulations, to provide an evaluation on whether their
use in video-games is suitable. The two rendering techniques
are, a voxel grid approach, and a volume sampling ray tracer.
First conducting a comprehensive review on past and current
optimisations, for each approach, the research then applies the
most suited, to a custom built graphical artefact. An experiment
testing each techniques’ rendering time at increasing simulation
resolutions, is used to determine the fastest renderer and identify
any performance patterns. Testing will focus on frame rate, a
vital factor for games, especially ones which are pursuing realism
and would consider using smoke simulations. The findings prove
that ray-casting performs better than voxels, independently and
inside game environments, however certain tests revealed voxel
rendering’s potential.

I. INTRODUCTION

THE standard of visual realism in games is constantly
increasing, due to continual developments made by AAA

titles. These improvements are led by innovations in the com-
puter graphics field and advancements in personal computer
hardware; Both allowing for higher levels of detail in models
and effects as well as more complex rendering and lighting
techniques. With such advancements, the ability of games to
produce smoke that looks and moves realistically, becomes
more and more expected by the players. This paper analyses
two methods of rendering a visually impressive smoke sim-
ulation, with the aim of determining it’s viability for game
use.

The current preferred method for games to produce visual
effects, such as smoke, is by using a simple particle system,
which results in an adequate but unrealistic effect. Visuals
can be greatly improved by modelling the smoke’s movement
in line with reality. A physically based simulation achieves
this, by tracking the smoke’s density and velocity across a
discretized grid, using fluid dynamic equations derived from
reality. The resulting smoke can be rendered in multiple
ways, most commonly with ray-casting which this paper will
compare to a voxels based approach. This process can be
computationally costly which is why it’s important to measure
performance, to find the most efficient method for games to
render realistic smoke.

The first rendering method covered in this paper is a voxel
grid based approach. Since the format of a physically based
smoke simulation is a 3D grid of density values, a one-to-one
mapping can be applied to a voxel grid, of the same size. With
each voxel, modeled as a small cube, visually representing the
corresponding density, from the smoke grid, by altering its
transparency. The resulting smoke should be rendered with

as much accuracy as its simulated. By using the standard
rasterization pipeline and employing instancing, this technique
should be able to efficiently render the large amount of voxels
required. Although this rendering technique seems the most
intuitive, there is a lack of research exploring its use, which is
why voxels are included in this paper’s research, determining
its appropriateness for rendering smoke.

The voxel method will be compared to a ray tracing
renderer, which for the past 5 years has seen a large increase
in popularity for games. This rendering technique produces
accurate global lighting from extensively tracking light rays.
This paper, however, will analyse a specific ray-casting tech-
nique called volume sampling, to render a physically based
smoke simulation. Which involves tracking rays through the
smoke’s grid, to estimate the density along that view angle,
which can then be used to visualise the simulation.

Along with the renderers performance comparison, an over-
all evaluation for physically based smoke’s use in video
games will be discussed. Aided by results from a specific test
emulating a game environment, a determination can be made,
of physically based smoke being a suitable improvement over
particle systems, for games.

II. RELATED WORK

This section will be split into three parts. The first will
discuss how smoke is realistically simulated and will present
current developments in the field. The following section will
explore recent works related to ray tracing and current optimi-
sation methods. The final section will cover the recent history
of voxel grids with the most popular optimisation methods.

A. Smoke Simulation

The process of graphically modelling smoke has evolved
over the last four decades, from using a simple particle system
to following the laws of fluid motion. The advancements in
this field are aimed towards pursuit of a smoke simulation
in-distinguishable to one made from nature. Although, since
video games are heavily restricted in time per frame, the most
common smoke simulations and effects are produced with
particle systems. Zhang[1].

1) Particle Systems: Reeves[2] first conceptualised the idea
of a particle system, a graphical generation technology that
can produce endless effects due to its modular nature. It
involves managing a large collection of particles, which are
small objects usually spheres or quads facing the camera.
Behaviour can be added to these particles to produce the ani-
mators intended effect, such as a constant force or collisions.



2

Fig. 1: Smoke effect made with Unity’s Particle System,
Stejskal[4]

Another important feature of a particle system is the cycle
of creation and clearing of particles, animators can define
particle lifetimes and particle emission properties for further
modification of the result.

Another reason games use particle systems is because of
their low performance cost, along with the capability to scale
the performance by adjusting the number of particles. This
is the reason why most games model smoke effects with a
particle system. Dong[3] outlines a smoke effect created using
a particle system, by spawning particles with an upward force
with an additional wind force, which produces a plume of
smoke moving at the set wind direction, with a high frame
rate. Figure 1 is another example of a smoke cloud created
with a particle system, in the popular game engine Unity.
The effect certainly resembles smoke but leaves room for
improvement with the unnatural dissipation of density and the
unresponsiveness to any advection forces.

As with other methods of simulating smoke, optimisations
can be made to particle systems. One of the options available
is to offload part of the total computations onto the gpu, as the
gpu excels at parallel processing it can compute many particles
simultaneously. Xiao [5] shows this by doubling their frame
rate for a firework particle system processed on the cpu, by
moving the particle calculations to the gpu.

Although particle systems have high frame rates, they don’t
look natural and can detriment the high realism games are
chasing. By using a physically based approach, smoke effects
can much closely represent reality.

2) Physically Based Simulation: All modern methods of
simulating realistic smoke are based on stable fluids [6], put
forward by Stam 1999. His work modelled smoke as an
incompressible fluid which would follow the Navier-Stokes
equations, to calculate the density and velocity of the smoke
within a finite space. The method involved simulating the
smoke within a two-dimensional grid of cells, each would store
the density of the smoke at that point. A fluid solver would
then calculate the diffusion between cells at each time step.
This method also included a velocity vector field for forces
acting on the smoke at each point where the density is stored.
Specifically, using a semi-Lagrangian approach to solve the
advection of smoke across the velocity field.

The result was an impressive step towards realistic smoke
simulations, producing a more natural flow to the smoke

Fig. 2: Smoke flowing past a ball, modelled using BiMocq
physically based fluid simulation method, image sourced from
[11]

with less visual noise than one made with a particle system.
The major improvement from its predecessors was the ability
for larger time steps whilst keeping the fluid stable making
it more appropriate for animators to use for visual effects.
There was a major drawback to this approach however, the
numeric dissipation of the semi-Lagrangian solver, where
density would dramatically disappear and seem unnatural. This
problem would be the focus of many future works.

Fedkiw et al 2001 [7] proposed a solution to solve the
dissipation problem, by adding a vorticity confinement step to
the solver, to preserve the lost smoke density. The vorticity
confinement step calculated the lost density and pushes it
back into the simulation. This resulted in the smoke featuring
flowing-like formations on its edges, creating a more natural
and sustainable result than the previous attempt.

Kim et al 2005 [8] pioneered an alternate solution, by
introducing a method to solve the non-dissipation problem,
using BFECC (back and forth error compensation and correc-
tion). This involved comparing the result from looking forward
in time to the result of looking backwards, to estimate the
error of dissipation. The error result is then used to adjust
the data before advection to provide a more accurate output.
Selle et al 2008 [9], proposed an improvement, by using a
modified MacCormack method, they were able to improve
performance by using the error result to correct the already
advected forward data, thus saving an advection call each time
step. These methods resulted in realistic turbulent elements
appearing in the smoke simulation whilst also keeping the
smoke unconditionally stable.

The two methods of vorticity confinement and back and
forth error calculation were combined in a paper brought
forward by Zhang 2015[10]. Zhang presents a novel approach
to solving the dissipation problem by using parts of both
previous attempts, he calculates the vorticity before and after
advection to get the vorticity correction value. This is used
to modify the intermediate velocity of the smoke in each
time step, resulting in more accurate tracking of velocity and
angular velocity. The visual improvements from this method
to previous ones are the overall clarity of the smoke, as well
as better turbulent features.

Qu et al 2019 [11], introduces a new approach by using
mapping functions to track the smoke density. The algorithm
still uses a grid to store the values and the same advection



3

algorithm as other papers, however, they develop a mapping
function to track the density across the grid. Similarly, with
other approaches, they utilise a back and forth error correction
method for accurate mapping. The result, figure 2, is a largely
realistic smoke simulation. In comparison to a particle system
approach, the smoke looks much denser within the cloud
and also with less overall visual noise around the main
body. Although much more apparent is the interesting natural
turbulent features which occur.

B. Rendering
The latter simulations (2005 onwards) were rendered using

sampling ray tracing which has changed from the earlier
methods [6],[7] that used voxel grids. The advantage of using
a ray tracer is that lighting can be calculated in the same pass
as rendering.

1) Ray Tracing: The process of ray tracing has existed
for centuries and there are many implementations, Whitted
1980 [12] proposed the first major graphics algorithm util-
ising ray tracing to illuminate a scene. This improved upon
previous lighting works, Phong [13], Blinn [14], by accurately
portraying reflections and refractions. Stochastic path tracing,
Kajiya 1986 [15], made advancements by accounting for
global light scattering which greatly improved environment
lighting and became the most realistic renderer. His work
utilised ray tracing to solve the rendering equation along light
paths, with enough paths calculated it is possible to accurately
estimate the scene lighting. The paper employs a Monte Carlo
statistical technique to find which paths need to be calculated,
considerably reducing the number paths traced. Video games
are only just starting to using this technology because of ray-
tracing specific hardware and optimisation advancements.

Purcell 2002 [16] utilises an advancement in graphics
hardware to compute ray tracing, in parallel, on the gpu,
this sees a large increase in performance over cpu driven
approaches. Another widely used optimisation is Bounding
Volume Hierarchies (BVH), Whitted [17], they greatly reduce
the amount of ray tracing intersection checks by enclosing 3d
objects in a bounding box and recursively grouping triangles
inside, into smaller boxes. 2009 [18] provides an efficient
BVH construction algorithm on the gpu which cuts a large
amount of computation when run before the rendering pass.
This optimisation method easily ties into ray tracing through
volume densities (smoke).

Kajiya 1984 [19] introduces a method of graphically por-
traying objects represented by density grids, their work focuses
on clouds but it can be extended to smoke. The method
calculates the light scattering through the volume density
objects. Perlin [20] implements a brute force approach, using
ray marching to step through the density field accumulating
the opacity of the ray. This approach is very costly to compute
as each step has to recursively ray march to the lights for
shading. Distance sampling, Pauly 2000 [21], is a technique
that randomly samples light scattering along a ray, improved
upon performance but produces visual noise as a trade-off.
Kulla 2012 [22] introduces importance sampling, a technique
which vastly improves visual quality without increasing per-
formance overhead. The technique efficiently distributes the

Fig. 3: Smoke rendered using path tracing, image sourced from
[22]

samples along each ray to areas most affected by the lights. A
major optimisation is made by removing the second ray trace
when calculating lighting, instead computing the transmittance
function for the ray, to access any shadow ray without having
to re-trace rays again. This technique produces incredibly
realistic results at efficient speeds.

2) Voxels: Voxels (volume elements) are used to visually
represent 3d objects, the same as pixels represent 2d, by using
a three-dimensional grid to store the object’s spatial volume.
The bulk of research on voxels lies within the medical field,
MRI and CT scans use voxel grids to store their data [23].
However, this paper will focus on voxel’s use in video games
and real-time rendering, as their popularity in these fields has
been quickly rising [24].

Texture-based volume rendering, Ikits [25], is a simple
approach to visualising a voxel grid. It splits the grid into a
series of 2d slices, generating a texture from each. The textures
are then applied to a series of planes, perpendicular to the view
angle, each representing a cross-section of the voxel grid. They
are rendered back to front, using a rasterization pipeline with
alpha blending. Lighting, Kniss [26], is computed with a first
pass over the grid, calculating how much light reaches each
voxel. This approach is faster than comparable ray casting
methods as it uses the rasterization pipeline which graphics
hardware is majorly optimised for. However, its pitfalls also
appear from rasterization, as simply rendering a lot of planes
will create a large number of fragments. Li [27] limits this
by skipping empty voxels and occluding unseen ones, greatly
improving performance.

Although computationally efficient texture-based rendering
does not render voxels as cubes, this is achieved in another
approach. Crassin [28] introduces a method of efficiently
rendering large numbers (several billion) of voxels using an
optimised data structure. The technique stores groups of voxels
as nodes in an octree structure, with group size usually being
323 and referred to as a brick, this allows for approximations
to be made of the voxels inside. Improving performance by
only rendering the voxels bordering empty space. This paper
uses a ray tracing render pipeline, resulting in reasonable



4

performance and impressive visuals. Miller [29] publishes
an alternate approach, rendering with rasterization instead,
improving on the performance by utilising the rasterization
optimised hardware.

The work most closely related to this paper is Zadick’s [30]
fluid simulation in a voxel game engine. Zadick implements
a physically based water simulation into a rasterization voxel
engine, with increased performance by pushing computations
onto the gpu. They aimed to improve on previous water
effects in voxel games, such as Minecraft, but their results
don’t justify the large performance overhead. The visuals do
represent water as a stylised ’blocky’ look but couldn’t scale
up to any realism due to performance restrictions.

III. METHODOLOGY

This paper takes a positivism stance on research using
deduction to verify all claims made. Claims which are based
on results from quantitative experiments ran on the artefact,
using frame-time as the main metric. Frame-time is being used
in this analysis because it is the key performance indicator
in gaming applications, as frame-time shrinks frame-rate in-
creases along with the overall visual experience.

It is important to note that although both rendering meth-
ods are rendering the same smoke simulation, minor visual
differences will occur. This subjective quality will be ignored
because, for games, visual quality will not matter if smoke
rendering consumes the majority of frame-time. Thus, perfor-
mance is the first step towards physically based smoke effects
in games.

A. Research question

The research question this paper’s addressing is: Can voxel
rendering, of a smoke simulation, improve run-time perfor-
mance over ray-casting in a video game environment? The
hypotheses drawn from this question are shown in table I.

The project’s hypotheses are tested by comparing two
distinct methods of rendering a pre-computed physically based
smoke simulation. The basis of the comparison is the mean
average time to render each frame. The resolution of the
smoke simulation increases, to identify any trends of resolution
affecting performance.

B. Hypotheses

Table I shows the hypotheses tested in this experiment.
The two hypotheses aim to compare the performance of
both rendering methods, to determine the best renderer, and
to measure performance inside a pseudo game environment
measuring performance in a real-world scenario.

As this is a comparison of rendering methods, to accurately
test these hypotheses, an environment is created that isolates
the rendering step as the main bottleneck. Thus, the smoke
itself will be pre-computed and inputted into the artefact on
start-up. Another benefit from using this testing strategy is that
the simulation resolution becomes experiment parameter and
is used to produce a more robust comparison.

C. Experiment Design

As laid out before, the experiment’s purpose is to measure
the performance difference between two rendering techniques.
To get valid data, the experiment gathers the mean frame
time of both techniques, at different levels of resolution, and
with or without background scenery. Simulation resolution
defines the grid size used in the smoke simulation and by
increasing it, observations can be made about how well the
rendering technique scales. Specifically, the simulation is run
at 5 levels of resolution, starting at 16x16x16 and ending at
256x256x256.

The inclusion of the background scenery variable is im-
portant, as it further evidences the performance claim, and
produces data in a typical game environment. It is achieved
by simply adding an extremely dense mesh into the scene,
representing the triangle count seen in a typical game frame.
From the data gathered, arguments can then be made for
physically based smoke’s use in the industry.

A single test consists of running the artefact for sixty
seconds at the given resolution and scene configuration, with
the average frame-time, for rendering smoke, being recorded.
The test is repeated five times for each configuration.

The experiments are run on a single computer, with average
consumer hardware, Steam hardware survey [31]. Specifically:
AMD Ryzen 7 3800x, AMD Radeon rx580, 16GB memory.

D. Data Management

To collect the time taken to render a single frame, markers
are added before and after the rendering step, including
any calls to the graphics-API which can be affected by the
renderers. The markers are used to send the times to a separate
data collection class, which calculates the time difference and
adds to a cumulative total, as well as increasing the total
frames rendered. From this data, the average frame time is
calculated, and including other pieces of data collected, each
experiment outputs:

• Average time to render a frame
• Smoke simulation size
• Scene configuration
• Date of experiment
• Total running time
Each time the artefact is run, the data is outputted as

a single .txt file, which is manually added into an excel
spreadsheet stored locally. A back-up of the data is also stored
on OneDrive, to ensure its security.

Once enough data was gathered, five sets of results for each
simulation configuration, the next step was to use statistical
analysis to confirm the outcome of each hypothesis. This is
achieved by using R to perform a regression test on the data,
for both hypotheses, to determine the relationship of simula-
tion resolution and the rendering method on the frame-time.
Scene configuration will be included in the regression test
for hypothesis 2. Both the scene configuration, and rendering
method, will be encoded into a binary value for the tests, so
that it can differentiate between their effects on frame time.
Refer to appendix A, for the specific regression model.



5

TABLE I: Hypothesis

Hypothesis Null Hypothesis Data Source

1 The amount of time to render a frame of a smoke
simulation using a voxel grid will, on average, be
less than an implementation using ray casting.

The amount of time to render a frame of a smoke
simulation using a voxel grid will, on average, be
greater than an implementation using ray casting.

Frame-time metrics from the
artefact

2 The amount of time to render a frame of a smoke
simulation, with background scenery, using a voxel
grid will, on average, be less than an implementation
using ray casting.

The amount of time to render a frame of a smoke
simulation, with background scenery, using a voxel
grid will, on average, be greater than an implemen-
tation using ray casting

Frame-time metrics from the
artefact

Along with how factors affect frame-time, a regression test
will also output a p-value for each factor of frame time, which
can be used to ensure that its relationship on frame-time is
statistically significant and not just random noise. The overall
test’s p-value, if significant, is used to confirm the hypothesis’
result, which in turn will be determined by analysing the
outputted regression model.

The outputted model will show the magnitude of each fac-
tor’s effect on frame-time. Meaning a single value representing
the relationship on frame-time for both rendering methods is
outlined, which is used to determine if voxel rendering is
slower or faster than ray-casting.

E. Ethical Considerations

This paper adheres to the BCS code of conduct [32] and
Falmouth University’s ”Research and Innovation Integrity and
Ethics” guidelines [33]. Ethical issues regarding participants,
Nuremberg Code [34], are minimal with the research of this
paper, as no other people are involved. The process of the
experiment only required repeatable testing of the artefact on
one machine. This did, however, raise some risk concerns
with desk screen over-use, which was minimised by following
proper guidance [35].

Furthermore, the research is not unethical in nature, as it just
adds to the graphical simulation field. But since smoke can be
hazardous, and potentially put lives in danger, it is important
for this research and accompanying artefact to be freely avail-
able, for industry to, if judged an improvement, implement
into their health and safety simulations. This is achieved via
an open-source public repository, refer to appendix E.

IV. ARTEFACT DESIGN

Since the experiment is measuring the speed of two different
rendering methods, a generic game engine was unfit because
of the inability to fully adjust its graphics pipeline. For this
reason, the artefact framework was built in a proprietary engine
made with C++ and using open-gl for the graphics API. This
allowed for low level access to the cpu, gpu, and memory,
giving full control over optimisation and performance. The
lack of bloat and excess features in a proprietary approach
further improved the accuracy and reliability of results. As
frame-time is key for the experiment, being able to log
performance at any point in the program helped to find any
bottlenecks.

The choice of using open-gl as the graphics API over Vulkan
or DirectX, was made because of its wider compatibility and
superior integration with C++. Additionally, open-gl easily

ports to mobile devices through the opengl-ES interface, which
is important as it provide performance metrics relevant to the
large amount of mobile game developers.

One of the requirements for the artefact, was to switch
rendering methods without affecting any other factor of per-
formance. Thus both rendering pipelines were built into the
same application, and on startup the program asked for the
experiment input parameters:

• Rendering method
• Simulation resolution
• Scene configuration
• Result output location
The inputted settings are loaded into the scene and the

experiment starts. During runtime, the user is able to freely
move the camera around the scene, but when collecting data
this was locked to minimise performance differences.

In terms of application design, the artefact utilises the
advantages of an object-orientated approach, using C++ to
effectively split the code into maintainable classes. Making
sure to follow the SOLID programming principles laid out by
Martin [36], outlining effective class design and interactability.

The program’s main classes are smoke-simulation, voxels,
and ray-casting. By splitting the program’s core functional-
ity into separate classes, changes could be made indepen-
dently, and effective software practices, including agile, can
be achieved, Martin [37]. The following sections discusses
key artefact components’ implementation details.

1) Smoke Simulation: The specification for this class, in
context of the experiment, was solely to provide the smoke’s
data to the renderers, more specifically the simulation’s current
density grid. To achieve this, the smoke class first had to
simulate the smoke, store it to a file, and finally, in the
experiment, read the data back into memory frame-by-frame.

For an adequate smoke simulation implementation, the
method aimed to follow Stam’s stable fluid approach [7],
using vorticity confinement for increased natural flows. This
technique stores the simulation using multiple flat grids to
represent smoke’s physical elements in 3D space, including a
current and previous grid for density, each direction of veloc-
ity, totalling eight grids. The size of each grid is calculated
using the inputted simulation resolution, which represents the
smoke’s width in each dimension, meaning the grids total size
is resolution3. However, the only grid needed for rendering is
the smoke’s current density, which specifies how much smoke
is in each point of space.

To model the smoke’s behaviour, the grids are sent through
multiple functions every time step. The two central functions



6

are diffusion and advection. Diffusion models how a grid’s
values spread out over time, achieved by taking a current
and previous grid as input, and looping over each value to
calculate how much is transferred to and from neighbouring
cells. Advection models how a grid’s values move according
to the current velocities, similarly implemented by looping
through the given grid’s values and using the current velocities
to calculate where the value should move given the time-
change. As a measure of reusability, both functions could
take any grid as an input, because they are later used with
by other grids than just density. These two functions were
all that was needed to manipulate density, controlling how
the smoke spreads and moves, producing a simple simulation,
however, to model the complex naturalistic flow of realistic
smoke, manipulation of velocity was required.

The velocity step first followed the same process per frame
as density, each directional grid’s values spread out using
diffusion and then the velocity field moves along itself using
advection. This gives the smoke its turbulent behaviour by
changing the velocity from being static to flowing like density
would. However, since advection is being used by the grids and
they are moving themselves according to their own velocity,
numerical faults can occur. Thus, each velocity grid is sent
through another function named projection, which ensures
the total velocity remains constant. Lastly, the velocity step
included the vorticity confinement technique, which adds small
natural ’curls’ in the velocity field, further improving the
smoke’s realism. This behaviour was implemented by pass-
ing the velocity grids to another function, similarly looping
through the grids to add vorticity.

The density and velocity steps are encapsulated by a single
update function, which can be publicly called through the
smoke object. The density grid’s pointer is also publicly
available, thus every class which needs the smoke’s density
can keep a reference. This design provides minimal class
interactions as the only function needed to be called each
frame is the smoke’s update.

That concludes the smoke’s real-time simulation function-
ality, figure 4 shows the smoke being rendered by ray-casting
and using approximating shading method. The approximate
shading model, darkens the smoke at areas of high density.

But the experiment requested the smoke to be loaded from a
file, to save large amounts of computation per frame. Follow-
ing the same design principles, updating the smoke each frame,
from a file, should be achieved through one public function.
To achieve these requirements a new class was created, solely
used by smoke, to act as an API for saving and reading smoke
simulations to files.

The class has two responsibilities, saving and reading
simulations, and uses an initialisation function to start both,
either creating a file or opening an existing file. For saving
simulations, the class is set-up to take the smoke’s density
data frame-by-frame and it will consecutively save the data to
the file. For reading, once the file is opened, the class is set-up
to read-in the smoke’s density data frame-by-frame.

The smoke’s file format is relatively simple, firstly a 32-
byte header is saved to store the simulation information: size,
frame-count, and compression settings. Then as smoke’s data

Fig. 4: Smoke, with a resolution of 128, rendered using ray-
casting, and approximating shading based on density

is sent in it is compressed, by equally splitting the grid into
smaller blocks and only storing a block if its values have
changed since the previous frame. Along with the frame’s data,
a header is also needed to specify which blocks need updating,
when reading the file. This cuts a large amount of data from
being stored, because density is usually concentrated to a small
area in the simulation, leaving the rest of the grid un-changed
each frame. An example of the compression efficiency is: a
150 frame, 256 wide, simulation’s file totalling 1.5gb, cutting
≈650% of the estimated 10gb file size.

2) Voxel Rendering: The specification for voxel rendering
is to take a grid of density values and draw the corresponding
smoke to the screen, using 3D voxels. This functionality was
built into a single class, which utilises a vertex and fragment
shader to communicate with the graphics API, to draw the
instanced voxels to the screen.

Instancing is a graphical technique which can efficiently
redraw an object to the screen without updating any buffers,
meaning one voxel’s data can be sent to the GPU’s memory
and be used to draw all of the million voxels needed. This
saves a large amount of frame-time, by cutting the number of
data transfers to the gpu from increasing with resolution, to
just one per frame.

The voxel rendering class is very simple, on creation it
generates a voxel mesh, using a cube’s geometry, and creates
a gl-object which is used to draw the voxel to the screen. Then
the public draw function takes the smoke’s density, packages
it as a vertex buffer to be sent to the shaders, and then uses
an instanced draw call to draw all the voxels to the screen.
This means again, just a single interaction point for an object
to enact its functionality, per frame.

Lastly, since instancing is used, the shaders complete the
bulk of computation by determining where each voxel is drawn
and its colour. This is partly achieved in the vertex shader, by
using the instance id, a unique index given to each instanced
voxel from 0 to N, to determine the voxel’s position in the



7

Fig. 5: Un-shaded smoke, with a resolution of 128, rendered
using voxels

3D grid. Then in the fragment shader, each voxel’s colour
is calculated using the given density, by altering its opacity.
Figure 5 shows the un-shaded result of voxel rendering.

3) Ray-casting Rendering: The specification for ray-casting
is mostly the same as voxels, take a density grid as input and
output the smoke to the screen, but instead, utilising a volume
sampling ray-caster. Similarly to voxel rendering though, only
one class and one set of shaders are needed and the class itself
follows the same format, only one draw call, with the density
given as input, is used to render the smoke.

Where the renderers differ, is how they represent density,
ray-casting uses only one cube to represent the bounding
simulation space and colours it by sending a 3D texture to
the fragment shader. This texture is generated in each frame’s
draw call, using the density data.

The technique used to colour the cube is called volume
sampling, which involves sending rays through each fragment
and then estimating the smoke’s density along the ray by
stepping through the 3D texture. This is implemented by the
fragment shader, each fragment generates a ray from the view
position into the current fragment on the cube. Then, starting
from the fragment’s position, the ray steps through the smoke,
sampling at each point to accumulate an estimated density
along the ray. finally, this estimated density can then be used
to colour the fragment on the outside of the cube. Figure 6
shows ray-casting being used to render an un-shaded result of
the smoke simulation.

A. Software Development Life Cycle

The software life cycle of the project followed a mixture of
two approaches, starting with a waterfall process of incremen-

Fig. 6: Un-shaded smoke, with a resolution of 128, rendered
using ray-casting

tally developing base versions of the main components one
after another:

1) Open-gl context
2) Voxel grid
3) Ray tracing
4) Smoke simulation
5) Data collection

Once completed, and each feature was working, an iterative
approach was applied to gradually optimise each component
using the methods researched in the related work section.
This benefited development by allowing performance to be
measured at each optimisation milestone, giving assurance of
improvement, and data for any later performance claims.

These life cycles resulted in the artefact being built on a
solid base and then progressively brought up to maximum
efficiency.

In aid of the development process, version control was used,
which predominantly backs-up the artefact online, providing a
fail safe for any errors or file corruption. Additionally, version
control also tracks any modifications made to the project over
its lifetime, which can be used to highlight refactors for future
maintainability. Refer to Appendix E for a link to the artefact’s
repository.

B. Validation and Verification

To ensure this paper’s research validity, it followed the
eight-point software quality model outlined by ISO/IEC
25010:2011 [38]. While some factors were disregarded be-
cause of the nature of the artefact, reliability was the main
concern and is checked by verifying several aspects of the
application. Most importantly making sure the smoke simula-



8

tion is accurate, also testing the graphical interface, and finally
verifying the data collection.

It’s important for the smoke simulation to be accurate
and reliable because the whole experiment relies on its data.
Therefore, its functionality was heavily tested with unit tests,
these were implemented using visual studio’s unit testing
framework. As the simulation was split into several functions
acting on a single array of data, unit tests are perfect for
verifying that each step was working correctly. A generic
unit-test structure includes, stating input density, applying the
specific smoke function, for example advection, then checking
the updated smoke density against an expected result. The
test fails if any differences are detected between the expected
and actual density grids. Along with the simulation validation,
writing and reading smoke to files was also unit tested,
ensuring the simulation is not modified during these processes.
Examples of all these unit tests and their results can be found
in appendix B.

For graphical reliability, integration tests [39] were im-
plemented. Specifically incremental testing, which involved
testing integration with the graphics API (open-gl) each time
a new feature was added. This was deployed to verify the
reliability between the graphical output and the application,
by checking that the graphical window is displaying exactly
what the program specified. These tests were conducted by
running the artefact through a set of specified outcomes, by a
controlling class, each test is visually checked, manually, and
marked passed or failed in an accompanying document. Refer
to Appendix C for an example integration test.

Other artefact components which are unsuitable for unit
and integration tests, were validated by static-code analysis
and manual code inspections. For example, data collection,
another vital artefact component, was thoroughly checked by
code walkthroughs verifying its markers were placed correctly,
to ensure it was precisely isolating the renderers performance.

V. RESULTS

The data gathered from the experiments was collected into
an excel spreadsheet, stored on the cloud, and later imported
into R-Studio. R was then used to visualise the data and
analyse any statistical significance for each hypothesis. Refer
to appendix A for r code.

A. Hypothesis 1: The amount of time to render a frame of a
smoke simulation, using a voxel grid will, on average, be less
than an implementation using ray-casting

This hypothesis focuses solely on comparing the runtime
performance of voxel rendering compared to ray-casting for
smoke simulations. Figure 7 visually represents the frame time
difference between both renderers at increasing simulation
resolutions, specifically the under-performance of voxel based
rendering. At around a resolution of 75, voxel rendering
diverges from ray-casting, increasing in time taken to render
each frame. This deficit only expands as the resolution get
larger, which strongly indicates that voxel rendering is slower
than ray-casting. A statistical analysis was performed to con-
firm this analysis.

Fig. 7: Line chart comparing frame time for both rendering
methods

Fig. 8: Regression analysis on smoke rendering data

Figure 8, shows the results of a linear regression analysis
performed on the data. By looking at the coefficients, a term
relating voxel-rendering to resolution has a near zero p-value,
which highly indicates additional frame time is added when
using voxel rendering. Combined with an overall p-value
substantially below 0.05, the model can be used to definitively
satisfy the null hypothesis, voxel rendering takes longer to
render a frame than ray casting. Given the high r-squared
value, showing the model accounts for 99% of variance, an
equation can be formed to accurately estimate frame-time:

ft = −0.37 + (3.2× 10−6)R3 + (2.9× 10−6)R3V (1)

With ft: frame time, R: resolution, and V as a binary
encoded value representing voxel rendering with 1 and a 0
for ray casting. The equation gives a baseline for frame time
using resolution, and additionally adding costs when using
voxel rendering. The lone voxel rendering constant, from the
regression model, is ignored due to the high p-value, meaning
the model found no significance on frame-time from including
a constant increase from voxel rendering.

B. Hypothesis 2: The amount of time to render a frame of
a smoke simulation with background scenery, using a voxel
grid will, on average, be less than an implementation using
ray-casting

This hypothesis seeks to test the performance of both ren-
dering methods in a pseudo video game environment, by using



9

background scenery totaling of around 50 million triangles.

Fig. 9: Regression analysis on smoke rendering data with
background scenery

Figure 9 shows the resulting linear regression model, which
uses both the regular data and rendering with background
scenery data. This model differs from the previous by adding
an additional term measuring the relationship between both
renderers and rendering background scenery.

Similarly, this model has an incredibly low p-value and high
r-squared value, which means the model can be used to accu-
rately predict frame time. Examining the coefficients, each is
statistically significant, including, the term relating rendering
method and background scenery. This term shows that voxel
rendering has additional costs to frame-time, when there is
background scenery, compared to ray-casting. Therefore, the
null hypothesis can be accepted, voxel rendering, on average,
takes longer to render a frame with background scenery, than
ray-casting.

The model presents the effect of rendering with background
scenery as a flat ≈10ms increase on frame time, with an
additional 1.5ms if rendering with voxels. Interestingly though,
this model also shows a decrease in frame-time consumption
from the resolution term, irrespective of scenery, than the
hypothesis 1 test. Another difference from the previous model,
is the voxel rendering term being significant and actually
decreasing frame time by ≈1ms, although this gets cancelled
out when rendering background scenery which adds ≈1.5ms.
However this does suggest at low resolutions, when rendering
without scenery, voxel rendering would perform better than
ray-casting.

VI. DISCUSSION

This experiment aimed to test the viability of using physi-
cally based smoke simulation in video games through measur-
ing the performance of two distinct rendering methods. The
results conclusively show ray-casting as the better performing
renderer, by frame-time metrics, from both null hypotheses
being accepted. It’s harder to explicitly determine viability for
video games, because of the vast differences between each
game, however this experiment resulted in incredibly useful
and usable information to help developers choose whether
using a physically based simulation is viable for their own
game.

The first relevant finding from the results is the graph gener-
ated. Figure 7 visually portrays the exponential relationship of
smoke simulation resolution to frame-time. This relationship
was expected for voxel rendering, due to individually render-
ing each cell of smoke, and which the total amount of cells
increases exponentially with resolution. However, ray-casting
only renders one cube, colours it inside the fragment shader,
and still has an exponential correlation to frame time. So
despite both renderers performing widely different calculations
each frame, they both follow similar frame time curves. This
suggests that the frame time is being bottle-necked by an
underlying computation shared between the two, this could
be passing the large amount of simulation data to the shaders
each frame. For example, a resolution of 128 would require a
grid of 2 million floats to be sent each frame. This would be
a key area for future improvement.

The statistical analysis of hypothesis-1 confirmed the
graph’s indication of voxel rendering increasing frame-time
over ray-casting. The model measured the relationship of
resolution-cubed and the rendering method on frame-time.
Verifying, with high accuracy, that resolution does inherently
affect both rendering methods’ frame time at an exponential
rate. The coefficient for resolutions effect on frame time is low,
but since resolution is cubed the effect on performance soon
becomes drastic, this was expected as it’s known from big-
O notation that introducing exponential rates into algorithms
heavily affect performance.

Another key take-away from the regression model is the
exact effect of using voxel rendering, on frame-time. Interest-
ingly the model doesn’t find any significance of a constant
difference between the two renderers, but instead finds high
correlation when combined with the resolution. Essentially
meaning, when using the voxel renderer the frame-time dif-
ference, from ray-casting, will be multiplied by the current
resolution-cubed, which is far worse than a flat change be-
cause of the aforementioned exponential issues. This drawback
seems to be inevitable when rendering with voxels as that is the
nature of the renderer, drawing the smoke grid in a one-to-one
mapping. Future work could look at targeted voxel drawing,
only rendering the needed voxels and disregarding the rest, this
has been done in similar work using an octree data structure.

The most useful finding from hypothesis 1’s results, was
equation 1. Because of the regression model’s high accuracy,
accounting for 99% of variance, an equation could be formed
to accurately predict frame time, from resolution and the
renderer type. The equation doesn’t reveal anything new from
the results, but formats them in a readable fashion. Which is
incredibly useful for developers who need to calculate whether
using a physically based smoke simulation fits their frame-time
budget.

The purpose of hypothesis 2 was to determine the effect of
rendering the simulation in a game environment, by adding
50 million triangles to the scene. The results concluded that
voxel rendering, again, performed worse than ray-casting, by
adding an additional frame-time when including background
scenery. This was determined by observing the coefficient
relating both, voxel rendering and scenery, being positive,
meaning that additional frame-time is added when both are



10

active.
The regression model did, however, show a slight flaw in

the data collection. The model found that when rendering
scenery, a flat 9ms is added to frame time. This would not
be significant in the model if data collection truly isolated
the smoke rendering, and just measured the effect scenery
had on the smoke renderer not overall frame-time. Examin-
ing data collection, the flaw comes from including the call
glSwapBuffers inside the timer. This is needed because it
affects frame-time and can differ between both renderers, but
also gets affected by other objects in the scene which is where
the problem arises, distinguishing between differences on the
renderers because of scenery or just the scenery. However, in
this case, because of the previous hypothesis’ test revealing a
direct correlation between resolution and frame time, and the
scenery being a flat increase regardless of resolution, and the
model is highly accurate, it can be confirmed as independent
and having no effect on smoke rendering. Though this issue
should be addressed in further research.

Interestingly, this model differs slightly from the previ-
ous, by finding significance in a flat decrease of frame-time
when rendering with voxels, but, on the other hand, doubling
the resolution×voxels coefficient. This would suggest at low
resolutions, without scenery, voxel rendering performs better
than ray-casting, until resolution reaches around 60 then voxel
rendering will start to negatively diverge from ray-casting.
The result probably occurred due to the smaller data-set, only
using data up-to a resolution of 128, which would not yet
encounter the large frame-time differences occurring, between
the renderers, at higher resolutions.

The most important finding from hypothesis 2 is that
rendering a physically based smoke simulation in a video
game environment doesn’t negatively affect its frame-time
or the scene’s, unless using voxel rendering which gives a
slight frame-time increase. This means that a developer does
not have to consider the smoke affecting the scene’s existing
performance, only the performance of rendering the smoke
itself. Being performance independent is vital for physically
based smoke simulations to be considered viable for games.

VII. LIMITATIONS

Due to time constraints, a suitable smoke shading algorithm
was not implemented for either rendering method. This limits
any claims for viability in video games, since shading is an
essential component for any real-world applications, video
games included. However, the shading algorithm would not
heavily impact performance and would share many similari-
ties between the two renderers, thus any claims about their
comparative performance would remain valid.

Another shortcoming due to time constraints was the ren-
derers optimisations. Although the renderers are optimised
commendably, they do not encompass the most recent ad-
vances made in the field, which were researched in the related
work section. At this time, both renderers are at their most
basic, functionally sound but perhaps over-working, which
does mean that one is not getting optimised over the other
giving some credibility to the results. But for an accurate

determination of the best rendering method, both need to be
optimised fully from further development.

Lastly, the performance testing of the smoke’s implemen-
tation within a game environment could have been improved
by using a industry-standard game engine. The only engine
which fits this purpose, whilst being realism orientated and
utilising C++, is Unreal Engine. This option was unavailable
due to lack of experience.

VIII. FURTHER RESEARCH

Further developments in this area of research should first
focus on addressing this paper’s limitations, the most impor-
tant being shading. For voxels a simple approach would be
to follow the two-pass algorithm laid out in Stam [7], and
simple shading for ray-casting would be to follow Pauly’s [21]
method, stepping through the smoke to track the ray’s opacity.
But for cutting-edge shading, research should aim to replicate
the path-tracing and scattering found in Kulla [22].

Another future development would be to improve upon this
paper’s voxel rendering implementation. One approach would
be to combine this paper’s method with the research done by
Crassin [28] on giga-voxels. Utilising this paper’s research on
smoke rendering with the larger voxel rendering capability of
giga-voxels, would achieve drastic performance gains as well
as portraying an accurate smoke simulation.

A specific area of improvement for both rendering methods,
which was mentioned earlier in the discussion section, is
the performance bottle-neck of sending the smoke data to
the shaders each frame. There is a certain lack of research
in this area, as previous work on smoke does not focus on
real-time rendering. Solving this problem would be certain
to improve performance across the board. A solution could
involve a similar approach to the compression algorithm for
saving smoke to files, this is because most of the smoke’s grid
does not change between frames only certain sections need to
be updated. Thus there’s an opportunity to cut the amount of
data transferred to the shaders, done efficiently would largely
improve performance.

A different direction of future research could be to compre-
hensively measure and analyse the effect on performance from
adding smoke into multiple existing video games. Specifically
with the intention of identifying any and all weaknesses of
rendering smoke in real-world scenarios. Further research
could then be conducted to address these weaknesses, thus
improving the smoke’s performance in a game environment.
Repeating this approach is certain to lead smoke rendering to
the point of video game viability.

IX. CONCLUSION

To conclude, this paper compared the performance of differ-
ent rendering methods for physically based smoke simulations,
with the intention of providing an alternate visual improvement
to the popular particle-system based smoke effects currently
used in games.

Current smoke simulation techniques and rendering meth-
ods were reviewed, and a standard smoke implementation was
developed in a graphical artefact made within a proprietary



11

C++ engine. Two rendering methods were tested, ray-casting
using a volume sampler and an instanced voxel renderer.
Both renderer’s performance was measured at varying smoke
simulation configurations, including a pseudo video game
environment, using a metric of the average time to render each
frame.

The experiments confidently concluded that ray-casting per-
formed better than voxels across the board. Although showing
potential at low simulation sizes, voxel rendering suffers
almost twice the performance cost from increasing the res-
olution, which scales exponentially and soon becomes a large
performance burden. Other tests proved the smoke’s compati-
bility inside game environments with their performance being
independent to the game’s existing scene. Overall the research
shows promise for physically based smoke, rendered using
ray-casting, to be adopted by games pushing the limits of
visual realism.

REFERENCES

[1] B. Zhang and W. Hu, “Game special effect simulation based on particle
system of unity3d,” in 2017 IEEE/ACIS 16th International Conference
on Computer and Information Science (ICIS), pp. 595–598, 2017.

[2] W. T. Reeves, “Particle systems—a technique for modeling a class of
fuzzy objects,” SIGGRAPH Comput. Graph., vol. 17, p. 359–375, jul
1983.

[3] W. Dong, X. Zhang, and C. Zhang, “Smoke simulation based on particle
system in virtual environments,” in 2010 International Conference on
Multimedia Communications, pp. 42–44, 2010.

[4] J. Stejskal, “How to create realistic smoke in unity,” 2015. Available at:
http://johnstejskal.com/wp/how-to-create-realistic-smoke-in-unity/.

[5] H. Xiao and C. He, “Real-time simulation of fireworks based on gpu
and particle system,” in 2009 First International Workshop on Education
Technology and Computer Science, vol. 1, pp. 14–17, 2009.

[6] J. Stam, “Stable fluids,” in Proceedings of the 26th annual conference
on Computer graphics and interactive techniques, pp. 121–128, 1999.

[7] R. Fedkiw, J. Stam, and H. W. Jensen, “Visual simulation of smoke,”
in Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’01, p. 15–22, Association for
Computing Machinery, 2001.

[8] B. Kim, Y. Liu, I. Llamas, and J. Rossignac, “Flowfixer: using bfecc
for fluid simulation,” in Proceedings of the Eurographics Workshop on
Natural Phenomena, NPH 2005, Dublin, Ireland, 2005., pp. 51–56, 01
2005.

[9] A. Selle, R. Fedkiw, B. Kim, Y. Liu, and J. Rossignac, “An uncondition-
ally stable maccormack method,” J. Sci. Comput., vol. 35, pp. 350–371,
06 2008.

[10] X. Zhang, R. Bridson, and C. Greif, “Restoring the missing vorticity
in advection-projection fluid solvers,” ACM Trans. Graph., vol. 34, jul
2015.

[11] Z. Qu, X. Zhang, M. Gao, C. Jiang, and B. Chen, “Efficient and
conservative fluids using bidirectional mapping,” ACM Trans. Graph.,
vol. 38, jul 2019.

[12] T. Whitted, “An improved illumination model for shaded display,”
Commun. ACM, vol. 23, p. 343–349, jun 1980.

[13] B. T. Phong, “Illumination for computer generated pictures,” Commun.
ACM, vol. 18, p. 311–317, jun 1975.

[14] J. F. Blinn, “Models of light reflection for computer synthesized pic-
tures,” SIGGRAPH Comput. Graph., vol. 11, p. 192–198, jul 1977.

[15] J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput. Graph.,
vol. 20, p. 143–150, aug 1986.

[16] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing
on programmable graphics hardware,” ACM Trans. Graph., vol. 21,
p. 703–712, jul 2002.

[17] S. M. Rubin and T. Whitted, “A 3-dimensional representation for fast
rendering of complex scenes,” SIGGRAPH Comput. Graph., vol. 14,
p. 110–116, jul 1980.

[18] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha,
“Fast BVH Construction on GPUs,” Computer Graphics Forum, 2009.

[19] J. T. Kajiya and B. P. Von Herzen, “Ray tracing volume densities,”
SIGGRAPH Comput. Graph., vol. 18, p. 165–174, jan 1984.

[20] K. Perlin and E. M. Hoffert, “Hypertexture,” in Proceedings of the 16th
Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’89, (New York, NY, USA), p. 253–262, Association for
Computing Machinery, 1989.

[21] M. Pauly, T. Kollig, and A. Keller, “Metropolis light transport for
participating media,” Rendering Techniques, vol. 2000, 11 2000.

[22] C. Kulla and M. Fajardo, “Importance sampling techniques for path
tracing in participating media,” Comput. Graph. Forum, vol. 31,
p. 1519–1528, jun 2012.

[23] R. Spin-Neto, E. Gotfredsen, and A. Wenzel, “Impact of voxel size
variation on cbct-based diagnostic outcome in dentistry: a systematic
review,” Journal of digital imaging : the official journal of the Society
for Computer Applications in Radiology, vol. 26, 12 2012.

[24] K. Gao, J. He, and Y. Qi, “A relevant research on the establishment
of a voxel gaming world,” in 2018 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2, 2018.

[25] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen, “Volume rendering
techniques,” in GPU Gems: Programming Techniques, Tips and Tricks
for Real-Time Graphics (R. Fernando, ed.), Pearson Higher Education,
2004.

[26] J. Kniss, S. Premoze, C. Hansen, P. Shirley, and A. McPherson, “A model
for volume lighting and modeling,” IEEE Transactions on Visualization
and Computer Graphics, vol. 9, no. 2, pp. 150–162, 2003.

[27] W. Li, K. Mueller, and A. Kaufman, “Empty space skipping and occlu-
sion clipping for texture-based volume rendering,” in IEEE Visualization,
2003. VIS 2003., pp. 317–324, 2003.

[28] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann, “Gigavoxels:
Ray-guided streaming for efficient and detailed voxel rendering,” in
Proceedings of the 2009 Symposium on Interactive 3D Graphics and
Games, I3D ’09, (New York, NY, USA), p. 15–22, Association for
Computing Machinery, 2009.

[29] M. Miller, A. Cumming, K. Chalmers, B. Kenwright, and K. Mitchell,
“Poxels: Polygonal voxel environment rendering,” in Proceedings of
the 20th ACM Symposium on Virtual Reality Software and Technol-
ogy, VRST ’14, (New York, NY, USA), p. 235–236, Association for
Computing Machinery, 2014.

[30] J. Zadick, B. Kenwright, and K. Mitchell, “Integrating real-time fluid
simulation with a voxel engine:,” The Computer Games Journal, vol. 5,
09 2016.

[31] Valve, “Steam hardware and software survey: November 2022,”
2022. Available at: https://store.steampowered.com/hwsurvey/Steam-
Hardware-Software-Survey-Welcome-to-Steam.

[32] British Computer Society, “Bcs code of conduct,” 2022. Avail-
able at: https://www.bcs.org/membership-and-registrations/become-a-
member/bcs-code-of-conduct/.

[33] Falmouth University, “Research & innovation integrity & ethics,”
2022. Available at: https://www.falmouth.ac.uk/research/research-ethics-
integrity.

[34] A. Mitscherlich and F. Mielke, “The nuremberg code (1947),” BMJ,
vol. 313, no. 7070, p. 1448, 1996.

[35] Health & Safty executive GOV, “Working safely with display screen
equipment,” 2023. Available at: https://www.hse.gov.uk/msd/dse/.

[36] R. C. Martin, “Design principles anddesign patterns,” 2000.
[37] R. C. Martin, Agile Software Development. Pearson Education, 2003.
[38] I. 25010:2011, “System and software quality models,” standard, Inter-

national Organization for Standardization/International Electrotechnical
Commission, 2011.

[39] H. Leung and L. White, “A study of integration testing and software
regression at the integration level,” in Proceedings. Conference on
Software Maintenance 1990, pp. 290–301, 1990.

[40] M. S. Nabizadeh, S. Wang, R. Ramamoorthi, and A. Chern, “Covector
fluids,” ACM Trans. Graph., vol. 41, jul 2022.

[41] Y. Deng, Y. Ni, Z. Li, S. Mu, and W. Zhang, “Toward real-time
ray tracing: A survey on hardware acceleration and microarchitecture
techniques,” ACM Comput. Surv., vol. 50, aug 2017.

[42] P. Clarberg, S. Kallweit, C. Kolb, P. Kozlowski, Y. He, L. Wu, E. Liu,
B. Bitterli, and M. Pharr, “Real-Time Path Tracing and Beyond.” HPG
2022 Keynote, July 2022.



12

APPENDIX A
DATA-ANALYSIS USING R

Fig. 10: Code snippet of the R code used to conduct statistical analysis and visualisation



13

APPENDIX B
ARTEFACT UNIT TESTING

Fig. 11: Artefact unit tests within visual studio’s testing
framework

APPENDIX C
ARTEFACT INTEGRATION TESTING

Fig. 12: Manual Artefact integration test table

Figure 12 shows an integration test table. As specified
earlier, following incremental integration testing means that
each time a new feature is added, which could affect the
renderers validity, an integration test is taken to verify they
are still rendering correctly.

The test runs five different density grids through both
renderers, which can be manually identified as correct or
not, corresponding to a pass or fail. The first test, single
incremental testing, checks the density grid by clearing the
grid and adding density to a single cell, which moves to the
next cell sequentially each frame. The second test is identical
except it doesn’t clear the grid each frame, leading to the
density filling up row by row. These two test prove density is
being rendered correctly at all points, in the grid.

The remaining tests are general checks for full or empty
density grids, and also cycling between the two. These are
used to identify that the renderer is being updated correctly,
and that the bounding smoke box is accurate.

APPENDIX D
ACKNOWLEDGEMENTS

I would like to thank my supervisor Brian McDonald for his
guidance and support. I would also like to thank the module
leader Michael Scott for his dedication to the course, along
with his help towards my research. Thanks also go out to my
peers within BSc for their encouragement and support.

APPENDIX E
ARTEFACT GIT REPOSITORY

https://github.falmouth.ac.uk/DF245193/Comp320-Artefact


